Abstract
Deep understanding and fine tailoring of spontaneous structural evolution of self-assembled arrays are pivotal in the rational design of advanced soft materials. However, an indistinct structure-property relationship and pathway complexity in self-assembly lead to a considerable challenge. Herein, we reveal the self-assembly pathway complexity in spontaneous aggregation of several N-terminated aromatic amino acids. By primarily tuning the incubation time, building blocks appended with alanine and serine selectively form 1:1 hydrated clathrates, enabling the microfiber to transition to crystals. The dynamic water intercalation process was studied by incubation time-dependent morphological changes, powder X-ray diffraction, and single-crystal structure analysis. A pronounced amino acid residue effect on the self-assembly evolution was reflected by supramolecular chirality inversion of the building block having the phenylalanine residue, accomplishing dynamic M- to P-helicity transition within a confined time scale.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.