Abstract

Technologically controlling nanostructures is essential to tailoring the functionalities and properties of nanomaterials. Various methods free from lithography-based techniques have been employed to fabricate 2D nanostructures; however it is still hard to achieve a well interconnected 2D regular nanostructure. Here, we demonstrate a facile chemical solution method to self-assemble a regular and interconnected VO2 nanonet on the wafer scale. The nanonet shows a well-defined 2D truss network constructed by VO2 nanorods with twinning relationships. The growth direction and crystallographic orientation of nanorods are synchronously controlled, leading to horizontally epitaxial growth of nanorods along three symmetric directions of the (001) single-crystal sapphire substrate. The unique nanonets enable the acquisition of excellent resistance switching properties and dramatic fatigue endurance. A large resistance change of near 5 orders with a 1.7 °C width of the hysteresis loop is characterized comparably to t...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.