Abstract

The ditopic ligand PyPzOAP (N-[(Z)-amino(pyridin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid) and the polytopic ligand 2-PzCAP (N'(3),N'(5)-bis[(1E)-1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3,5-dicarbohydrazide) were synthesized in situ by condensation of methyl imino picolinate with 5-methyl-1-(2-pyridyl) pyrazole-3-carbohydrazide and 2-acetyl pyridine with pyrazole-3,5-dicarbohydrazide respectively. The ligands PyPzOAP and PzOAP (reported earlier, Dalton Trans., 2007, 1229) self-assemble to form homoleptic [2 × 2] tetranuclear M(4) (M = Cu(II) and Ni(II)) square grids structures [Cu(4)(PyPzOAP)(4)](NO(3))(4) (1), [Cu(4)(PzOAP)(4)](ClO(4))(4) (2) and [Ni(4)(PyPzOAP)(4)](NO(3))(4)·8H(2)O·2CH(3)CN (3). While the ligand 2-PzCAP forms a dicopper(II) complex [Cu(2)(2-PzCAP)(OH)(NO(3))(H(2)O)](NO(3))·2H(2)O (4). The complex 1 is a perfect square grid (a = 4.201 Å), whereas, 2 and 3 are almost square grids. All these compounds have been characterized by X-ray structural analyses and variable temperature magnetic susceptibility measurements. EPR studies have also been carried out for complexes 1, 2 and 4. In the Cu(4) grid (1), all the Cu(II) centers are in a distorted octahedral environment with N(4)O(2) chromophore, while, in complex 2, all four Cu(II) centers have a square pyramidal environment with N(3)O(2) chromophore. In complex 3, all four Ni(II) centers have distorted octahedral geometry with N(4)O(2) chromophore. In compound 4, the Cu(II) centers are in square pyramidal environment with N(3)O(2) chromophore. The magnetic properties of compounds 1 and 2 show the presence of intramolecular ferromagnetic exchange interaction (J = 5.88 cm(-1) for 1 and 4.78 cm(-1) for 2). The complex 3 shows weak intramolecular antiferromagnetic interaction (J = -4.02 cm(-1)). While, complex 4, shows strong antiferromagnetic behavior (J = -443 cm(-1)).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.