Abstract
Anti-reflection (AR) coatings are widely used in a spectrum of optical and optoelectronic devices, such as monitors, car dashboards, optical lenses, photodiodes, and solar cells. Narrowband quarter-wavelength single-layer and broadband multilayer dielectric AR coatings are typically fabricated by expensive and low-throughput vapor deposition processes (e.g., sputtering). Inspired by the subwavelength-structured cornea of some nocturnal moths, nanostructured broadband moth-eye AR coatings that can significantly suppress optical reflection over a wide range of wavelengths and light incident angles have been extensively exploited by both top-down and bottom-up approaches. Among many available bottom-up technologies, colloidal self-assembly is a promising approach as it is simple, fast, and inexpensive. In this review article, we will discuss two scalable colloidal self-assembly technologies based on Langmuir–Blodgett assembly and spin-coating for fabricating quarter-wavelength and moth-eye AR coatings with unique self-cleaning functionalities on transparent substrates (e.g., glass) and semiconductor wafers (such as crystalline silicon and GaAs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.