Abstract

Sandwich-like V2O5/graphene mesoporous composite has been synthesized by a facile solvothermal approach. The crystalline structure, morphology, and electrochemical performance of the as-prepared materials have been investigated in detail. The results demonstrate that the 30-50 nm V2O5 particles are homogeneously anchored on conducting graphene sheets, which allow the V2O5 nanoparticles to be wired up to a current collector through the underlying conducting graphene layers. As an anode material for lithium ion batteries, the composite exhibits a high reversible capacity of 1006 mAh g(-1) at a current density of 0.5 A g(-1) after 300 cycles. It also exhibits excellent rate performance with a discharge capacity of 500 mAh g(-1) at the current density of 3.0 A g(-1), which is superior to the performance of the vanadium-based materials reported previously. The electrochemical properties demonstrate that the sandwich-like V2O5/graphene mesoporous composite could be a promising candidate material for high-capacity anode in lithium ion batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.