Abstract

The clinical efficacy of lenvatinib (LFT) is limited by its poor aqueous solubility and low bioavailability. In this work, LFT-loaded soy phospholipid and sodium glycocholate mixed micelles (LFT-MMs) were prepared through classical co-precipitation. And it was served as an oral administration to address these shortcomings. The preparation conditions were optimized by single-factor experiments. The mass ratio of PC, SGC and LFT, and the species of dispersing media were proved to be decisive factors in controlling the properties of LFT-MMs. The optimal LFT-MMs presented prominent enhancement (500-fold) in LFT solubility, high encapsulation efficiency (87.6 %) as well as suitable stability (>1 month at 4 °C). The biocompatibility of LFT-MMs was estimated by in vitro serum stability measurement and hemolysis test. It showed that serum proteins hardly adhered to the surface of LFT-MMs, and insignificant hemolytic rate (<0.5 %) was observed at the micelles concentration below 1 mg/mL. Cytotoxicity test (MTT assay) was carried out to judge the in vitro antitumor activity. LFT-MMs showed an enhanced inhibitory activity against two main kinds of differentiated thyroid cancer cells over LFT and LFT Mesylate. To estimate the in vivo oral bioavailability of LFT-MMs, SD rats were used as animal model. Notably, the relative bioavailability of LFT-MMs compared with the original form of LFT was 176.7 %. These superior characteristics indicated that the mixed micelles are promising water-soluble formulations suitable for LFT oral delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call