Abstract
In this study, the self-assembling strategy was used to synthesize a therapeutic and diagnostic nanosystem for tumor-triggered targeting dual-mode near-infrared fluorescence (NIRF)/magnetic resonance (MR) imaging and photodynamic therapy applications. This theranostic nanosystem was synthesized based on the self-assembling of the short peptide (PLGVRGRGDC) and the gadolinium chelator (diethylenetriamine pentaacetic acid) functionalized amphiphilic DSPE-PEG2000, followed by loading with the insoluble photosensitizer therapeutic agent chlorin e6 (Ce6). The formed theranostic nanosystem can accumulate in the matrix metalloproteinase 2 (MMP2) rich tumor sites guided by the enhanced permeability and retention effect and MMP2-substrate peptide (PLGVR) targeting. After PLGVR was hydrolyzed in the tumor microenvironment by MMP2, the nanosystem was actively taken up by tumor cells via Arg-Gly-Asp (RGD) peptide-mediated internalization. With the coexistence of gadolinium and Ce6, the formed nanosystem can be used for both NIRF/MR dual-mode imaging and photodynamic therapy. These tumor-triggered targeting self-assembled nanoparticles with low cytotoxicity and high endocytosis efficiency can efficiently induce A549 cancer cell apoptosis under laser irradiation. Meanwhile, they possessed enhanced tumor-targeted NIRF/MR imaging ability and efficiently inhibited tumor growth with minimal side effects in mice bearing A549 lung cancer. Therefore, these self-assembled theranostic nanoparticles may have great potential for cancer clinical diagnosis and therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.