Abstract
AbstractSummary: This article gives a review on self‐assembled nanofibrillar aggregates such as helical, twisted ribbon‐like and tubular forms, those are produced in aqueous bilayer membrane and organogel systems. Two common features necessary for the chemical structure that yields special morphology are a chiral carbon atom and moieties feasible for intermolecular interactions although there are some exceptions. In aqueous systems, a hydrophobic effect is also an essential driving force for molecular aggregates in aqueous solution systems but almost disappear in organic media. More positive intermolecular interactions play an important role in molecular aggregation in organic media. Hydrogen bonding interaction is especially effective and many organogelators are classified into this category. Some lipophilic peptides have been investigated not only as organogelators but also with respect to their self‐assembling behaviors. This latter property gives them distinct advantages compared with conventional gel systems because the gels include highly‐ordered structures supramolecular functions like aqueous lipid membranes through molecular orientation. This article also introduces applicability of the organogel system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.