Abstract

Confining the protein degradation activity of proteolysis-targeting chimera (PROTAC) to cancer lesions ensures precision treatment. However, it still remains challenging to precisely control PROTAC function in tumor regions in vivo. We herein describe a near-infrared (NIR) photoactivatable nano-PROTAC (NAP) for remote-controllable proteolysis in tumor-bearing mice. NAP is formed by molecular self-assembly from an amphiphilic conjugate of PROTAC linked with an NIR photosensitizer through a singlet oxygen (1O2)-cleavable linker. The activity of PROTAC is initially silenced but can be remotely switched on upon NIR photoirradiation to generate 1O2 by the photosensitizer. We demonstrated that NAP enabled tumor-specific degradation of bromodomain-containing protein 4 (BRD4) in an NIR light-instructed manner. This in combination with photodynamic therapy (PDT) elicited an effective suppression of tumor growth. This work thus presents a novel approach for spatiotemporal control over targeted protein degradation by PROTAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.