Abstract

Two-dimensional (2D) MoS2 nanomaterials have been extensively studied due to their special structure and high theoretical capacity, but it is still a huge challenge to improve its cycle stability and achieve superior fast charge and discharge performance. Herein, a facile one-step hydrothermal method is proposed to synthetize an ordered and self-assembled MoS2 nanoflower (MoS2/C NF) with expanded interlayer spacing via embedding a carbon layer into the interlayer. The carbon layer in the MoS2 interlayer can speed the transfer of electrons, while the nanoflower structure promotes the ions transport and improves the structural stability during the charging/discharging process. Therefore, MoS2/C NF electrode exhibits exceptional rate performance (318.2 and 302.3 mA·h·g−1 at 5.0 and 10.0 A·g−1, respectively) and extraordinary cycle durability (98.8% retention after 300 cycles at a current density of 1.0 A·g−1). This work provides a simple and feasible method for constructing high-performance anode composites for sodium ion batteries with excellent cycle durability and fast charge/discharge ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.