Abstract

Nano-corrals for capturing surface electrons are of interest in molecular electronics. Here we show that haloalkane molecules, e.g., 1-chlorododecane, physisorbed on Si(1 1 1)-(7 × 7) self-assemble to form dimers stable to 100 °C which corral silicon adatoms. Corral size is shown to be governed by the haloalkane chain-length. Spectroscopic and theoretical evidence shows that the haloalkane dimer induces electron transfer to the corralled adatom, shifting its energy levels by ∼1 eV. Isolation of a labile pre-cursor points to a model for corral formation which combines mobility with immobility; monomers diffusing in a mobile vertical state meet and convert to the immobile horizontal dimers constituting the corrals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call