Abstract

Nanocrystal (NC) based non-volatile memories are a leading candidate to replace conventional floating gate memory. Substituting the poly-silicon gate with a layer of discrete nanocrystals or nanodots provides increased immunity to charge loss. Metallic nanocrystals have been found to be advantageous over Si- or Ge-based approaches due to good controllability of the size distribution and the achievable NC densities as well as increased charge storage capacity of metallic nanocrystals. Sufficiently high NC densities have been achieved to demonstrate feasibility for sub-32 nm node non-volatile memory devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.