Abstract
A technique for generating a general screening platform consisting of dots of immobilized beads on silicon has been developed via self-sorting and -assembly of different kinds of beads. The dots are defined by a teflon-like film, which due to its hydrophobic characteristics also prevents cross-contamination of liquid from different dots. To enable functionalization of individual dots with different target molecules simultaneously a new way of microcontact printing has been explored where different target solutions are printed in parallel using one stamp. In order to show that this platform can be designed for both biochemical assays and organic chemistry, streptavidin-, amino- and hydroxy-functionalized beads have been self-sorted and -assembled both on separate and common platforms. The self-sorting and -arrangement are based on surface chemistry only, which has not previously been reported. Beads of different sizes and material have successfully been immobilized in line patterns as narrow as 5 μm. Besides silicon, quartz and polyethylene have also been used as substrates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have