Abstract

Nanoscale plasmonic waveguides composed of metallic nanoparticles are capable of guiding electromagnetic energy below the optical diffraction limit. Signal feed-in and readout typically require the utilization of electronic effects or near-field optical techniques, whereas for their fabrication mainly lithographic methods are employed. Here we developed a switchable plasmonic waveguide assembled from gold nanoparticles (AuNPs) on a DNA origami structure that facilitates a simple spectroscopic excitation and readout. The waveguide is specifically excited at one end by a fluorescent dye, and energy transfer is detected at the other end via the fluorescence of a second dye. The transfer distance is beyond the multicolor FRET range and below the Abbé limit. The transmittance of the waveguide can also be reversibly switched by changing the position of a AuNP within the waveguide, which is tethered to the origami platform by a thermoresponsive peptide. High-yield fabrication of the plasmonic waveguides in bulk was achieved using silica particles as solid supports. Our findings enable bulk solution applications for plasmonic waveguides as light-focusing and light-polarizing elements below the diffraction limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.