Abstract
Plasmonic waveguides can offer a promising solution beyond the optical diffraction limit. However, the cost of shrinking mode sizes reflects in metallic ohmic losses that lead to a short propagation distance of light, hindering the practical applications of plasmonic waveguides. Herein, we tackled the practicality of a novel CMOS-compatible all-dielectric waveguide structure that exploits electromagnetic boundary conditions of both the continuous normal component of the electric displacement field and the tangential component of the electric field at a high-index-contrast interface, which allows the attainment of mode areas comparable with those of plasmonic waveguides and theoretical lossless. The proposed waveguide comprises two oppositely contacted nanoridges with semicircular tops embedded in a conventional slot waveguide. By stepping on the strong electric field in the low-index slot region of the slot waveguides, the nanoridges squeeze the mode areas further with a guiding mechanism identical to that of a surrounding slot waveguide. Through the design of the geometry parameters, the calculated mode area of the reported structure achieved an unprecedented order of 4.21 × 10-5A0, where A0 is the diffraction-limited area. The mode area dependence on fabrication imperfections and spectral response showed the robustness and broadband operation. Moreover, on the basis of extremely tight mode confinements, the present waveguide even outperformed the hybrid plasmonic waveguides in lower crosstalk. The proposed idea makes the realization of practically feasible nanoscale photonic integrated circuits without any obstructions by the limited propagation distance of light for plasmonic waveguides, thereby expanding its applications in various nanophotonic and optoelectronics devices requiring strong light-matter interaction within nanoscale regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.