Abstract

Construction of porous three-dimensional (3D) heterostructured materials is promising for establishing high-performance energy-storage devices, enabling large surface area, facilitated ion and electron transport, and synergistic effects between multi-components. Here, we report a simple and cost-efficient freeze-casting method to improve the electrochemical performance of porous 3D graphene aerogel (GA) embedded with gold nanoparticles (3D Au/GA). The as-synthesized 3D Au/GA was broadly characterized by XRD, Raman, XPS, SEM, and TEM. Morphology observations show that 3D-porous cellular structure of GA with uniform distribution of 20 nm Au nanoparticles on the surface of GA. Based on structural merits, the electrochemical performance of as-synthesized porous 3D Au/GA was exemplified as electrode materials for supercapacitor with a high specific capacitance of 554 F g−1 at 5 mVs−1, excellent cycling stability with capacitance retention of 91.06% after 10,000 cycles, and exhibits significantly specific energy of 10.7 W h kg−1 at a specific power of 203.5 W kg−1. This could be ascribed to the synergetic effect of conducting Au and the unique 3D porous, cellular structure of GA. In addition, the developed electrode materials are used to fabricate a symmetric solid-state supercapacitor (SSC) device for demonstrating the practical applicability, and it was able to light a commercial LED. Our method opened a new direction to synthesize porous 3D GA with various nanoparticle decorations for numerous applications as energy storage devices, catalysis, sensors, biomedical, and environmental applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call