Abstract

The feasibility and potential mechanisms of the self-alkali activation brought by municipal solid waste incineration (MSWI) fly ashes to the self-cementation of arsenic-contaminated soils were quantitatively evaluated and comprehensively analyzed to avoid the additional application of the alkali activators and binder materials traditionally. The employment of the two kinds of precursor materials achieved the self-alkali-activated self-cementation (‘double self’) under ambient conditions. The largest compressive strength (MPa) of 25.64 and lowest leaching toxicities (mg/L) of 21.05, 2.86, 0.08, 0.02, 2.05, and 0.34 for Zn, Cu, Cr, Cd, Pb, and As were obtained in the solidified matrix. Geopolymerization kinetics of the ‘double self’ cementation can be mathematically fitted by the Johnson-Mehl-Avrami–Kolmogorov model. CaClOH and halite in the MSWI fly ashes set up the self-alkali activation by reacting with the kaolinite and quartz in soils contaminated with arsenic by forming layered hydration and three-dimensional geopolymerization products to push for self-cementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.