Abstract
This paper reports an in-depth study of a water-droplet-assisted self-alignment technique that self-aligns radio frequency identification (RFID) dies on four-pad patterns. The segmented structure of four hydrophilic pads on a hydrophobic substrate brings freedom to the design of the electrical functionality and the surface functionality. The paper investigates the influence of the key parameters that may affect the self-alignment in theory and experiment. The theoretical model justifies that RFID dies can be reliably aligned on the segmented four-pad pattern even when the initial placement error is as large as 50% of the size of the die and the gap between the four pads is about 10% of the size of the die. A method has been introduced to estimate the sufficient droplet volume for self-alignment. A series of experiments have been carried out to verify the results of the model. The experiments indicate that the self-alignment between the 730 × 730 µm RFID dies and the pattern occurs reliably when the releasing bias between the RFID die and antenna is less than 400 µm for patterns with 50 and 100 µm gaps, and successful self-alignment is possible even with greater bias of 500 µm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.