Abstract

This paper describes a self-aligned SiGe MOS-gate field-effect transistor (FET) having a modulation-doped (MOD) quantum wire channel. An analytical model based on modified charge control equations accounting for the quantum wire channel, is presented predicting the transport characteristics of the MOS-gate MODFET structure. In particular, transport characteristics of devices having strained SiGe layers, realized on Si or Ge substrates, are computed. The transconductance gm and unity-current gain cutoff frequency (fT) are also computed as a function of the gate voltage VG. The calculated values of fT suggest the operation of one-dimensional SiGe MODFETs to be around 200 GHz range at 77°K, and 120 GHz at 300°K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.