Abstract

A long start-up period is one of the main factors limiting the practical application of aerobic granular sludge (AGS). Bioaugmentation could be a good strategy to accelerate aerobic granulation. In this research, four denitrifying strains were isolated from mature AGS. Mycobacterium senegalense X3-1 exhibited the strongest self-aggregation ability and good denitrification ability. Ensifer adhaerens X1 showed the strongest denitrification ability but poor self-aggregation ability. Additionally, strain X3-1 demonstrated the highest extracellular polymeric substances (EPS) contents accompanied by relatively high N-acyl-homoserine lactones (AHLs) concentrations, which could illustrate its predominant aggregation ability—AHLs produced by bacteria regulate EPS secretion to accelerate cell aggregation. Strain X3-1 and X1 were chosen as inoculated bacterium to verify the effects of bioaugmentation on AGS granulation and denitrification. Granulation was achieved in the sequential batch reactors (SBRs) added strain X3-1 10 days earlier than the control group. The particle morphology and TIN removal rate of X3-1 were both superior to the latter. The introduction of strains reduced the richness and diversity of the microbial community, but the key functional bacteria, Candidatus_Competibacter, proliferates in the SBR inoculated with X3-1. Conclusively, it is suggested Mycobacterium senegalense X3-1 could be a prospective strain for enhancing AGS formation and denitrification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.