Abstract
We discuss the need for a confluence of localization, sensing, and communications if reconfigurable intelligent surfaces (RISs) are to be deployed in a self-adaptive manner in the dynamically evolving rich-scattering settings that are typical for important 6G deployment scenarios, such as factories. We establish that in such problems the rich-scattering wireless channels are subject to a highly nonlinear deterministic double-parametrization through both the RIS and uncontrolled moving objects. Therefore, acquiring full context-awareness through localization and sensing is a prerequisite for self-adaptive RIS-empowered communications. Yet, the byproducts of this daunting communications overhead can feed many appliances that require context awareness, such that overhead concerns may vanish. We illustrate the essential steps for operating a self-adaptive RIS under rich scattering based on a prototypical case study. We discover that self-adaptive RISs outperform context-ignorant RISs only below a certain noise threshold that depends, among other factors, on how strongly uncontrolled perturbers impact the wireless channel. We also discuss ensuing future research directions that will determine the conditions under which self-adaptive RISs may serve as technological enabler of 6G networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.