Abstract
Reconfigurable intelligent surface (RIS) has emerged as a promising technology to enhance the spectral efficiency of wireless communication systems. However, if there are many obstacles between the RIS and users, a single RIS may not provide sufficient performance. For this reason, a double RIS-aided communication system is proposed in this paper. However, this system also has a problem: the signal is attenuated three times due to the three channels created by the double RIS. To overcome these attenuations, an active RIS is proposed in this paper. An active RIS is almost the same as a conventional RIS, except for the included amplifier. Comprehensively, the proposed system overcomes various obstacles and attenuations. In this paper, an active RIS is applied to the second RIS. To reduce the power consumption of active elements, a partially active RIS is applied. To optimize the RIS elements, the sum of the covariance matrix is found by using channels related to each RIS, and the right singular vector is exploited using singular value decomposition for the sum of the covariance matrix. Then, the singular value of the sum of the covariance value is checked to determine which element is the active element. Simulation results show that the proposed system has better sum rate performance compared to a single RIS system. Although it has a lower sum rate performance compared to a double RIS with fully active elements, the proposed system will be more attractive in the future because it has much better energy efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.