Abstract

Advanced fabrics with thermal wet management capability as low energy consumption media contribute to personal cooling and drying. Nevertheless, it remains a great challenge to obtain intelligent fabrics with adjustable thermal conductivity (TC) capable of bridging the supply and demand between human body temperature and self-adaptive thermal conduction. Herein, we report hygroscopic-shrinkage nanofiber-based fabrics with excellent moisture sensitivity and significant volume shrinkage, which benefits the construction of high-density thermal conductive pathways by absorbing sweat, with a maximum sweat absorption rate reaching up to 1781%. The TC of the shrunken fabric is significantly increased from the initial 0.102 to 0.731 W·m-1 K-1 with a volume shrinkage rate of 89% due to the synergistic effect of van der Waals force, capillary force, viscous resistance, and gravity. Besides, an enhanced TC of the resulting fabrics facilitates rapid heat transfer to the environments. By capturing the surface temperature variations of the fabric after shrinkage and commercially available cotton/Coolmax, we obtained the fabric that releases the same amount of heat in a shorter period of time (3.3 s). With its exceptional personal thermal and wet management properties, this study paves the way for designing new-generation intelligent fabrics capable of creating more comfortable microclimates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call