Abstract

Selenium (Se) is a rare metal refined from the by-product produced from copper anode slimes. Japan is the largest producer of Se in the world. Each year approximately 40 tons of Se is discarded in wastewater. As, in many regions, wastewater contains a low concentration of Se, which is masked by the high levels of other metal contaminants, it is challenging to recover pure Se using the currently available treatment technologies. Therefore, it is important to develop novel technologies to recover and recycle Se from wastewater, especially in Japan, as it is poor in metal resources. To recover Se from wastewater using bio-hydrometallurgy, we isolated Pseudomonas stutzeri NT-I, which reduces soluble seleno-oxyanions to insoluble elemental selenium (biomineralization) and produces volatile dimethyl diselenide (DMDSe) (biovolatilization) from elemental selenium. We investigated the effects of several factors significant for the reduction of seleno-oxyanions and the DMDSe synthesis rate, such as temperature, pH, agitation speed, and aeration rate, using a 5-L jar fermenter, and developed two methods for Se recovery from wastewater by controlling biovolatilization and biomineralization using P. stutzeri NT-I. The rates of selenium recovery from wastewater by biovolatilization and biomineralization were 35.9% at 120 h, and 78.8% at 24 h, respectively. Furthermore, elemental selenium was refined with a purity of 99%, or higher, either by an oxidation-reduction reaction, or by oxidizing roasting from each recovered compound. Thus, our study demonstrates that P. sutzeri NT-I can be used for the recovery of rare metals from wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.