Abstract

The influence of a commercially available modified polysaccharide (HydroStar®, Chemstar Chemical Products) on the roughness of short-term and small-scale copper electrodeposits was investigated using Atomic Force Microscopy (AFM), linear scan profilometry and scaling analysis. Copper was deposited on a 316 L stainless steel cathode at 40 °C and 300 A m−2 from an electrolyte containing 40 g L−1 Cu2+, 170 g L−1 H2SO4, 1.5 g L−1 Fe3+, 15 mg L−1 Cl− and either 0, 10, 50 or 100 mg L−1 of HydroStar. Copper deposits produced between 15 and 25 min were imaged using AFM and 2D linear scan profilometry was used to gather surface features of copper samples produced in the range of 120 and 240 min. Scaling analysis was applied to quantify the surface characteristics of limiting roughness (δ) and critical length (LC) from which δ/LC was computed and related to the aspect ratio of surface features. All copper deposits showed a general rise in δ and LC with deposition time but the growth rates decreased when HydroStar was included in the electrolyte indicating that the additive lowers the vertical height of surface features as well as their widths. Furthermore, copper deposits were more consistently produced in the presence of HydroStar and, for a given value of limiting roughness, had surface features with wider base than those created in the absence of the additive. The results show that the modified polysaccharide acts to create smooth copper deposits by generating surface features with lower aspect ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.