Abstract

This study introduces a sustainable and environmentally friendly method for synthesizing selenium nanoparticles (SeNPs) by using Calluna vulgaris as a reducing agent. The process involves the addition of Na2SeO3 to a C. vulgaris aqueous solution, followed by reduction with ascorbic acid. UV-Vis spectroscopy confirmed SeNP formation, with a distinct absorption peak at 289 nm. Morphological analysis via Scanning Electron Microscopy (SEM) revealed spherical nanoparticles below 100 nm, as corroborated by Transmission Electron Microscopy (TEM) images displaying sizes ranging from 42.91 to 66.93 nm. Energy Dispersive Spectroscopy (EDS) confirmed the presence of selenium. Antibacterial assessments demonstrated the efficacy of C.vulgaris Selenium Nanoparticles (Cv-SeNPs) against gram-positive (Enterococcus faecalis, Staphylococcus aureus) and gram-negative bacteria (Escherichia coli). Cv-SeNPs exhibited notable antibacterial activity, particularly against E. Faecalis. In terms of antioxidant activities, Cv-SeNPs exhibited significant scavenging potential against DPPH and ABTS radicals, with low IC50 values of 24.72 and 16.87 µg/mL, respectively. The scavenging activities increased with concentration, reaching 86.6% for DPPH and 99.7% for ABTS at specific concentrations. The inclusion of ascorbic acid as a capping agent further augmented the free radical scavenging capabilities, indicating a synergistic relationship between selenium nanoparticles and capping agents. This research underscores the dual functionality of Cv-SeNPs as effective antibacterial agents and potent antioxidants. The green synthesis methodology utilizing C. vulgaris offers a sustainable approach for producing selenium nanoparticles with desirable characteristics, suggesting potential applications in medicine and industry. Further research on biomedical and industrial uses of Cv-SeNPs is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.