Abstract

Micromineral elements have a fundamental participation in the processes of organogenesis and fetal development. The objective of this study was to assess the effect of selenium (Se) injection in pregnant female rabbits, during organogenesis or rapid fetal growth, on the productive performance of their progeny. An experiment was carried out with 30 New Zealand female rabbits, with an average age of 6 months. At the end of mating (day 0), using a randomized complete design, the female rabbits were distributed into three experimental groups, which were assigned to the following treatments: Control, female rabbits were injected intramuscularly (IM) with 0.5 ml of saline on days 13 and 23 of gestation; Early administration, female rabbits that were injected IM with Se (0.10 mg/kg BW) on day 13 of gestation (organogenesis) and 0.5 ml of saline on day 23 of gestation; and Late administration, female rabbits that were injected IM with 0.5 ml of saline on day 13 of gestation and Se (0.10 mg/kg BW) on day 23 of gestation (rapid fetal growth). No differences were found on kindling performance of dams and pre-weaning growth of rabbit offspring. However, an injection of Se to pregnant rabbits affected the growth and development of their progeny, with the treatment leading to changes in the yield of some carcass traits (forelimb weight and forelimb muscle weight) and weights of some organs (liver, lungs, and spleen). The Se treatment (both early and late) also resulted in lower concentrations of glucose, triglycerides, and cholesterol when compared to the control group. These effects were different when Se injection was performed during organogenesis or rapid fetal development. The results from this study suggest that there are beneficial effects of gestational Se injection of rabbit dams on important productive traits of their progeny.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.