Abstract

This study demonstrated the removal of selenite and selenate in flow-through permeable bioelectrochemical barriers (microbial electrolysis cells, MECs). The bioelectrochemical barriers consisted of cathode and anode electrode compartments filled with granular carbon or metallurgical coke. A voltage of 1.4 V was applied to the electrodes to enable the bioelectrochemical removal of selenium species. For comparison, a similarly designed permeable anaerobic biobarrier filled with granular carbon was operated without voltage. All biobarrier setups were fed with water containing up to 5,000 µg L−1 of either selenite or selenate and 70 mg L−1 of acetate as a source of organic carbon. Significant removal of selenite and selenate was observed in MEC experimental setups, reaching 99.5–99.8% over the course of the experiment, while in the anaerobic biobarrier the removal efficiency did not exceed 88%. By simultaneously operating several setups and changing operating parameters (selenium species, influent Se and acetate concentrations, etc.) we demonstrated enhanced removal of Se species under bioelectrochemical conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.