Abstract

The direct hydrogenolysis of cellulose represents an attractive and promising route for green polyol production. Designing a catalyst system that could control the selectivity of polyols of this process is highly desirable. In this work, we realized the selectivity-switchable production of ethylene glycol (EG) and 1,2-propylene glycol (1,2-PG) by using Sn species with different valences in combination with Ni catalysts. The combination of Ni/AC and metallic Sn powders exhibited a superior activity toward EG (57.6%) with up to 86.6% total polyol yield, while the combination of Ni/AC and SnO favored the formation of 1,2-PG (32.2%) with a 22.9% yield of EG. The Sn species in NiSn alloy in situ formed from metallic Ni and Sn powders was found to be the active sites for the high selectivity of EG as evidenced by control experiments and characterizations including X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy dispersive X-ray mapping, and 119Sn Mos...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.