Abstract
We report a low-cost and high-throughput process for the fabrication of two-dimensional SiO2 photonic crystal (PhC) by nanospherical-lens photolithography method to improve the light extraction of GaN-based light-emitting diodes (LEDs). The PhC structures were realized by the selective area growth of p-GaN using SiO2 nanodisks, which were patterned utilizing a self-assembled nanosphere as an optical lens. Without prejudice to the electrical properties of LEDs, the light output power (at 350 mA) of LEDs with the SiO2 and corresponding air-hole PhC was enhanced by 71.3% and 49.3%, respectively, compared to that without PhC. The LEDs with selectively grown PhC structures were found to exhibit partial compression strain release and reduced emission divergence. The finite-difference time-domain simulation was also performed to further reveal the emission characteristics of PhC LEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.