Abstract
It has been known that plastics with undegradability and long half-times have caused serious environmental and ecological issues. Considering the devastating effects, the development of efficient plastic upcycling technologies with low energy consumption is absolutely imperative. Catalytic hydrogenolysis of single-use polyethylene over Ru-based catalysts to produce high-quality liquid fuel has been one of the current top priority strategies, but it is restricted by some tough challenges, such as the tendency towards methanation resulting from terminal C-C cleavage. Herein, we introduced Ru nanoparticles supported on hollow ZSM-5 zeolite (Ru/H-ZSM-5) for hydrocracking of high-density polyethylene (HDPE) under mild reaction conditions. The implication of experimental results is that the 1Ru/H-ZSM-5 (~1 wt % Ru) acted as an effective and reusable bifunctional catalyst providing higher conversion rate (82.53 %) and liquid fuel (C5-C21) yield (62.87 %). Detailed characterization demonstrated that the optimal performance in hydrocracking of PE could be attributed to the moderate acidity and appropriate positively charged Ru species resulting from the metal-zeolite interaction. This work proposes a promising catalyst for plastic upcycling and reveals its structure-performance relationship, which has guiding significance for catalyst design to improve the yield of high-value liquid fuels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.