Abstract

AbstractEffect of metal nature on reductive amination was investigated with biomass‐based furfural as a typical substrate. Among the tested heterogeneous metal catalysts, cobalt proved to be the most effective metal for the synthesis of the corresponding primary amine. Under a relatively mild reaction condition, 98.9 % yield of furfurylamine was obtained over Raney Co and it can be reused more than eight times without a significant decrease in the catalytic performance. By extensively studying the catalytic pathways and reaction mechanism, it is found that the selectivity to primary amine and secondary amine was governed by the relative rate of hydrogenolysis and hydrogenation of the Schiff base intermediate. The superiority of Raney Co in furfurylamine synthesis can be ascribed to its high efficiency on hydrogenolysis of the Schiff base intermediate and its low performance in the hydrogenation of the Schiff base, carbonyl group and furan ring. Furthermore, ammonia greatly promoted the catalytic hydrogenolysis of the Schiff base intermediate over Raney Co without clear deactivation of the metal active sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.