Abstract

AbstractIntricately interwoven topologies are continually being synthesized and are ultimately equally versatile and significant at the nanoscale level; however, reports concerning ravel structures, which are highly entwined new topological species, are extremely rare and fraught with tremendous synthesis challenges. To solve the synthesis problem, a tetrapodontic pyridine ligand L1 with two types of olefinic bond units and two Cp*M‐based building blocks (E1, M=Rh; E2, M=Ir) featuring large conjugated planes was prepared to perform the self‐assembly. Two unprecedented [5+10] icosanuclear molecular 4‐ravels containing four crossings were obtained by parallel‐displaced π⋅⋅⋅π interactions in a single‐step strategy. Remarkably, reversible structural transformations between the 4‐ravel and the corresponding metallocage could be realized by concentration changes and solvent‐ and guest‐induced effects. X‐ray crystallographic data and NMR spectroscopy provide full confirmation of these phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call