Abstract

An Cu(II)-imprinted interpenetrating polymer network (IPN) gel of epoxy-diethylenetriamine and methacrylic acid-acrylamide-N,N′-methylene-bis-(acrylamide) was synthesized by the ionic imprint polymer (IIP) technique. The first polymer network is formed by epoxy gelation with diethylenetriamine. The other is formed by copper methacrylate co- polymerization with acrylamide and cross-linker N,N′-methylene-bis-(acrylamide). The adsorption–desorption characteristics of the IPN gel as a highly selective solid-phase extraction (SPE) and preconcentration adsorbent for Cu2+ from aqueous solution were investigated. The experimental results show that trace Cu2+ ions can be quantitatively enriched at pH 5 with recovery >95%. The maximum static adsorption capacity of the ion-imprinted functionalized gel adsorbent was 76 mg g−1. Comparing with non-imprinted IPN gel, the imprinted IPN gel has higher adsorption capacity and selectivity for Cu2+ by the static adsorption–desorption experiment. Simultaneously, the times of adsorption equilibration and complete desorption were remarkably short. The precision (RSD) for 11 replicate adsorbent extractions of 20 ng mL−1 Cu2+ was 3.4%. The established procedure was applied to two real water samples with satisfactory results. The prepared ion-imprinted IPN gel adsorbent was shown to be promising for solid-phase extraction coupled with atomic absorption spectrometry (AAS) for the determination of trace copper in real samples. In addition, the coordination interaction of Cu2+ and functional groups of the IPN gel adsorbent was primarily discussed by FT-IR spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call