Abstract

Direct reduction of gas-phase CO2 to renewable fuels and chemical feedstock without any external energy source or rare-metal catalyst is one of the foremost challenges. Here, using density functional theory and ab initio molecular dynamics (AIMD) simulations, we predict Ti2C(OH)2 MXene as an efficient electron-coupled proton donor exhibiting simultaneously high reactivity and selectivity for CO2 reduction reaction (CRR) by yielding valuable chemicals, formate, and formic acid. This is caused by CO2 spontaneously crossing the activation barrier involved in the formation of multiple intermediates. Metallic Ti2C(OH)2 contains easily donatable protons on the surface and high-energy electrons near the Fermi level that leads to its high reactivity. High selectivity arises from low activation barrier for CRR as predicted by proposed mechanistic interpretations. Furthermore, H vacancies generated during the product formation can be replenished by exposure to moisture, ensuring the uninterrupted formation of the products. Our study provides a single-step solution for CRR to valuable chemicals without necessitating the expensive electrochemical or low-efficiency photochemical cells and hence is of immense interest for recycling the carbon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call