Abstract
Electrocatalytic CO2 reduction reaction (CRR) is one of the most promising strategies to convert greenhouse gases to energy sources. Herein, the CRR was applied towards making C1 products (CO, HCOOH, CH3 OH, and CH4 ) on g-C3 N4 frameworks with single Ni, Co, and Fe introduction; this process was investigated by density functional theory. The structures of the electrocatalysts, CO2 adsorption configurations, and CO2 reduction mechanisms were systematically studied. Results showed that the single Ni, Co, and Fe located from the corner of the g-C3 N4 cavity to the center. Analyses of the adsorption configurations and electronic structures suggested that CO2 could be chemically adsorbed on Co-C3 N4 and Fe-C3 N4 , but physically adsorbed on Ni-C3 N4 . The H2 evolution reaction (HER), as a suppression of CRR, was investigated, and results showed that Ni-C3 N4 , Co-C3 N4 , and Fe-C3 N4 exhibited more CRR selectivity than HER. CRR proceeded via COOH and OCHO as initial protonation intermediates on Ni-C3 N4 and Co/Fe-C3 N4 , respectively, which resulted in different C1 products along quite different reaction pathways. Compared with Ni-C3 N4 and Fe-C3 N4 , Co-C3 N4 had more favorable CRR activity and selectivity for CH3 OH production with unique rate-limiting steps and lower limiting potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.