Abstract

Phosphorus (P) extraction from human urine is a potential strategy to address global resource shortage, but few approaches are able to obtain high-quality liquid P products. In this study, we introduced an innovative flow-electrode capacitive deionization (FCDI) system, also called ion-capture electrochemical system (ICES), for selectively extracting P and N (i.e., urea) from fresh human urine simply by integrating a liquid membrane chamber (LMC) using a pair of anion exchange membrane (AEM). In the charging process, negatively charged P ions (i.e., HPO42– and H2PO4–) can be captured by acidic extraction solutions (e.g., solutions of HCl, HNO3 and H2SO4) on their way to the anode chamber, leading to the conversion of P ions to uncharged H3PO4, while other undesired ions such as Cl– and SO42– are expelled. Simultaneously, uncharged urea molecules remain in the urine effluent with the removal of salt. Thus, high-purity phosphoric acid and urea solutions can be obtained in the LMC and spacer chambers, respectively. The purification of P in an acidic environment is ascribed largely to the competitive migration and protonation of ions. The latter contributes ~27% for the selective capture of P. Under the optimal operating conditions (i.e., ratio of the urine volume to the HCl volume = 7:3, initial pH of the extraction solution = 1.43, current density = 20 A/m2 and threshold pH ~ 2.0), satisfactory recovery performance (811 mg/L P with 73.85% purity and 8.3 g/L urea-N with 81.4% extraction efficiency) and desalination efficiency (91.1%) were obtained after 37.5 h of continuous operation. Our results reveal a promising strategy for improving in selective separation and continuous operation via adjustments to the cell configuration, initiating a new research dimension toward selective ion separation and high-quality P recovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call