Abstract

Reactive nitrogen species can cause oxidative modifications of certain amino acid residues in proteins, notably the modification of tyrosine to 3-nitrotyrosine (3-NT), which is a potentially useful marker of oxidative stress. Since lung diseases are associated with airway inflammation and oxidative stress, quantification of 3-NT in exhaled breath condensate (EBC) may provide a non-invasive means for monitoring ongoing inflammatory processes. 3-NT-like immunoreactivity has previously been detected in EBC, but no definitive evidence for the presence of 3-NT in EBC is available. Here, a method based on gas chromatography/negative ion chemical ionization/tandem mass spectrometry was established for the quantification of free 3-NT in EBC. The detection limit was 0.56 pM (corresponding to 3.0 amol microl(-1) sample injected) and the method was found to give linear results (r2 > 0.999) in the concentration range of 0-5.0 nM. The coefficient of variation (CV) for within-day and between-day precision were 11 and 12%, respectively. No artifactual nitration was observed during sample processing. The method was applied to study subjects with asthma (n = 8), and healthy subjects (n = 10), but only a slight non-significant increase in 3-NT levels was found in the former group (median [interquartile ranges]; 99 [50-547] amol s(-1) vs. 75 [35-147] amol s(-1)). No correlation with exhaled nitric oxide (NO), pulmonary function or EBC levels of total protein was observed. The 3-NT levels were much lower compared to previously reported levels, based on immunochemical measurements. The method does not allow the simultaneous quantification of tyrosine in samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.