Abstract

The magnetic and dual conductive imprinted photocatalysts (MCIPs) were synthesized through the suspension polymerization method. TiO2/Fe3O4/MWCNTs, 1-methylimidazole-2-thiol and pyrrole were used as supports, template molecule and functional monomer, respectively. The MCIPs were further characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), scanning electron microscopy (SEM), transmission electron microscope (TEM), UV–visible diffuse reflectance spectra (UV–vis DRS), thermogravimetric analysis (TGA) and vibrating sample magnetometer (VSM). The result revealed that polypyrrole (PPy) was formed and well embedded in the surface imprinted layer of TiO2/Fe3O4/MWCNTs. Owing to PPy and MWCNTs, the MCIPs was equipped with dual conductivity which was particularly useful for photodegradation of 1-methylimidazole-2-thiol in aqueous solution under ultraviolet irradiation. Through a series investigation of factors, it was obvious that when the polymerization time was 24h and the adding dose of pyrrole was 8mmol, the resulting MCIPs obtained the highest photocatalytic ability. In addition, the photodegradation process obeyed the pseudo-first-order kinetic reaction and exhibited an excellent selective degradation ability of 1-methylimidazole-2-thiol. The degradation intermediate products and mechanism of 1-methylimidazole-2-thiol were further discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.