Abstract

In this paper, we determine the degree to which changes can be induced in the equilibrium thermal diffusivity and conductivity of a material via a selective nonequilibrium infrared stimulation mechanism for phonons. Using the molecular crystal RDX, we use detailed momentum-dependent coupling information across the entire Brillouin zone and the phonon gas model to show that stimulating selected modes in the spectrum of a target material can induce substantial changes in the overall thermal transport properties. Specifically in the case of RDX, stimulating modes at ∼22.74 cm–1 over a linewidth of 1 cm–1 can lead to enhanced scattering rates that reduce the overall thermal diffusivity and conductivity by 15.58 and 12.46%, respectively, from their equilibrium values. Due to the rich spectral content in the materials, however, stimulating modes near ∼1140.67 cm–1 over a similar bandwidth can produce an increase in the thermal diffusivity and conductivity by 55.73 and 144.07%, respectively. The large changes suggest a mechanism to evoke substantially modulated thermal transport properties through light–matter interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.