Abstract
The deposition of fragrance delivery systems onto human hair from a shampoo formulation is a challenging task, as the primary function of shampoo is to cleanse the hair by removing primarily hydrophobic moieties. In this work, to tackle this challenge, phage-display-identified peptides that can bind to human hair under shampooing conditions are first identified and subsequently used to enhance the deposition of model fragrance delivery systems. These delivery systems are based on either poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) copolymers as a representative for polymeric profragrances or polyurethane/polyurea-type core-shell microcapsules as a model physical fragrance carrier. The incorporation of a hair-binding peptide enhanced the deposition of PHPMA copolymers by a factor of 3.5-5.0 depending on the extent of peptide incorporation, whereas 10 wt % surface functionalization of microcapsules with the peptide led to a 20-fold increase in their deposition. In a final experiment, treatment of the hair samples under realistic application conditions with the peptide-functionalized microcapsules resulted in an increase in fragrance release from the hair surfaces.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have