Abstract

The direct gas-phase oxidation of propylene with molecular oxygen was carried out over Ti–MCM-41 impregnated with metal nitrates to produce propylene oxide (PO) selectively. The effects of Ti-loading on MCM-41, nitrate additives, acid treatment of the support, and the presence of molecular oxygen were investigated. The PO yield increased with increasing Ti content of Ti–MCM-41 and reached a maximum at an optimum Si/Ti ratio of 100. Calcium nitrate was the most suitable additive among various nitrates of alkali and alkaline earth metals investigated, and the acid treatment of Ti–MCM-41 effectively improved its catalytic performance for the PO formation. The presence of both nitrate and molecular oxygen was essential for the PO formation. A synergetic mechanism between the Ti species and metal nitrate was proposed to be responsible for the selective formation of PO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.