Abstract

It is known that opioids inhibit the hypoxic ventilatory response in part via an action at the carotid body, but little is known about the cellular mechanisms that underpin this. This study's objectives were to examine which opioid receptors are located on the oxygen-sensing carotid body type I cells from the rat and determine the mechanism by which opioids might inhibit cellular excitability.Immunocytochemistry revealed the presence of μ and κ opioid receptors on type I cells. The μ-selective agonist DAMGO (10 μM) and the κ-selective agonist U50-488 (10 μM) inhibited high K(+) induced rises in intracellular Ca(2+) compared with controls. After 3 h incubation (37 °C) with pertussis toxin (150 ng ml(-1)), DAMGO (10 μM) and U50-488 (10 μM) had no significant effect on the Ca(2+) response to high K(+).These results indicate that opioids acting at μ and κ receptors inhibit voltage-gated Ca(2+) influx in rat carotid body type I cells via G(i)-coupled mechanisms. This mechanism may contribute to opioid's inhibitory actions in the carotid body.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call