Abstract
An in vitro autoradiographic technique has recently been developed to visualize receptor-activated G-proteins by using agonist-stimulated [35S]guanylyl-5'-O-(gamma-thio)-triphosphate ([35S]GTPgammaS) binding in the presence of excess guanosine 5'-diphosphate. This technique was used to localize opioid-activated G-proteins in guinea pig brain, a species that contains the three major types of opioid receptors. This study used selective mu, delta, and kappa opioid agonists as well as nociceptin or orphanin FQ (N/OFQ) peptide, an endogenous ligand for an orphan opioid receptor-like (ORL1) receptor, to stimulate [35S]GTPgammaS binding in guinea pig brain sections. Opioid receptor specificity was confirmed by blocking agonist-stimulated [35S] GTPgammaS binding with the appropriate antagonists. In general, the distribution of agonist-stimulated [35S]GTPgammaS binding correlated with previous reports of receptor binding autoradiography, although quantitative differences suggest regional variations in receptor coupling efficiency. Mu, delta, and kappa opioid-stimulated [35S]GTPgammaS binding was found in the caudate-putamen, nucleus accumbens, amygdala, and hypothalamus. Mu-stimulated [35S]GTPgammaS binding predominated in the hypothalamus, amygdala, and brainstem, whereas kappa-stimulated [35S]GTPgammaS binding was particularly high in the substantia nigra and cortex and was moderate in the cerebellum. N/OFQ-stimulated [35S] GTPgammaS binding was highest in the cortex, hippocampus, and hypothalamus and exhibited a unique anatomical distribution compared with opioid-stimulated [35S]GTPgammaS binding. The present study extends previous reports on opioid and ORL1 receptor localization by anatomically demonstrating functional activity produced by mu, delta, and kappa opioid and ORL1 receptor activation of G-proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.