Abstract

In this paper, we propose a highly selective and efficient gas detection system based on a narrow-band IR metasurface emitter integrated with a resistive heater. In order to develop the sensor for the detection of specific gases, both the microheater and metasurface structures have been optimized in terms of geometry and materials. Devices with different metamaterial structures and geometries for the heater have been tested. Our prototype showed that the modification of the spectral response of metasurface-based structures is easily achieved by adapting the geometrical parameters of the plasmonic micro-/nanostructures in the metasurface. The advantage of this system is the on-chip integration of a thermal source with broad IR radiation with the metasurface structure, obtaining a compact selective radiation source. From the experimental data, narrow emission peaks (FWHM as low as 0.15 μm), corresponding to the CO2, CH4, and CO absorption bands, with a radiant power of a few mW were obtained. It has been shown that, by changing the bias voltage, a shift of a few tens of nm around the central emission wavelength can be obtained, allowing fine optimization for gas detection applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call