Abstract

We report on a comprehensive theoretical and experimental study of stop-band switching in photonic crystals. The suggested principles of light control are based on new Bragg diffraction effects discovered in multi-component periodic structures. The described analytical approach allows a detailed study of selective switching of $(hkl)$ stop-bands by varying the permittivity of the components or the lattice parameters. For two-component photonic crystals, we showed two possible switching-off regimes. In the first regime, all of the stop-bands may only be simultaneously switched off if the certain matching conditions for permittivities are satisfied. In contrast, in the second regime, one can selectively switch off a preferred stop-band by adjusting the structural parameters irrespective of the permittivity values. For multi-component crystals, the on/off switching of stop-bands has a quasiperiodic resonant character. In the absence of resonance conditions, an $(hkl)$ stop-band can be selectively switched by tuning the permittivity of the structural components, whereas at the resonance, a photonic stop-band cannot be switched off by changing the permittivity. A proper choice of the structural and dielectric parameters can create a resonance photonic band determining the Bragg wavelengths, to which a photonic crystal can never be transparent. The theoretical results were experimentally tested on classical photonic crystals, opals. Selective switching of stop-bands was studied by immersion-resolved and polarization-resolved spectroscopy. We found that opals possess all predictable properties of multi-component structures due to inhomogeneity of the constituent $a{\text{-SiO}}_{2}$ spheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.