Abstract

Photonic crystals are periodic dielectric structures which selectively tune the wavelengths of light propagating through the material1 2. The highly ordered, repeating structural lattice induces a photonic bandgap or stopband which inhibits or partially attenuates certain frequencies of light, similar to the electronic bandgap with forbidden energies present in semiconductor materials3. These forbidden frequencies are blocked in transmission and reflected from the material surface. The inherent sensitivity of this photonic response to repeating lattice size dimensions and the magnitude of the refractive index contrast between the constituent materials allows for tailored optical behaviour by adjusting the photonic crystal structural parameters or environment4 5.A range of interesting applications using both the photonic bandgap and material porosity have emerged, predicated on the ability to accurately forecast the wavelength position of the photonic response. Colorimetric sensors6 7, photocatalysts8 9 and solar cells10 are prime examples of these types of applications; the porosity of the photonic crystal facilitates greater material infiltration and reactions, while the photonic bandgap acts to enhance the optical component of the process. Critically, the use of these structures is tied to our ability to predict and interpret the signature optical response.Here, we examine several techniques which can be used modify the photonic bandgap/stopband for photonic crystal structures. For TiO2 and SnO2 inverse opal photonic crystals, we explore how solvent infiltration into the highly porous network red-shifts the observed photonic response. Using solvents with different refractive indices, we apply the shifted photonic stopband data to determine the fill fraction of solid material comprising the photonic crystal network. We also examine functionalization of artificial opal and inverse opal photonic crystals with metal films. We detail the emergence of a consistent photonic stopband blue-shift with increasing metal content and propose a reduction in the effective refractive index of the entire photonic crystal introduced by the specific properties of the metal film. Importantly, the effects investigated here are broadly applicable to a range of realistic operating conditions across many disciplines where an understanding of the photonic stopband is paramount to the application. References Yablonovitch, E., Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters 1987, 58 (20), 2059-2062.John, S., Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters 1987, 58 (23), 2486-2489.Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S., Photonic crystals: putting a new twist on light. Nature 1997, 386 (6621), 143-149.Blanford, C. F.; Schroden, R. C.; Al-Daous, M.; Stein, A., Tuning Solvent-Dependent Color Changes of Three-Dimensionally Ordered Macroporous (3DOM) Materials Through Compositional and Geometric Modifications. Advanced Materials 2001, 13 (1), 26-29.Aguirre, C. I.; Reguera, E.; Stein, A., Tunable Colors in Opals and Inverse Opal Photonic Crystals. Advanced Functional Materials 2010, 20 (16), 2565-2578.Zhang, Y.; Qiu, J.; Hu, R.; Li, P.; Gao, L.; Heng, L.; Tang, B. Z.; Jiang, L., A visual and organic vapor sensitive photonic crystal sensor consisting of polymer-infiltrated SiO2 inverse opal. Physical Chemistry Chemical Physics 2015, 17 (15), 9651-9658.Li, H.; Chang, L.; Wang, J.; Yang, L.; Song, Y., A colorful oil-sensitive carbon inverse opal. Journal of Materials Chemistry 2008, 18 (42), 5098-5103.Chen, J. I. L.; von Freymann, G.; Choi, S. Y.; Kitaev, V.; Ozin, G. A., Amplified Photochemistry with Slow Photons. Advanced Materials 2006, 18 (14), 1915-1919.Collins, G.; Lonergan, A.; McNulty, D.; Glynn, C.; Buckley, D.; Hu, C.; O'Dwyer, C., Semiconducting Metal Oxide Photonic Crystal Plasmonic Photocatalysts. Advanced Materials Interfaces 2020, 7 (8), 1901805.Liu, L.; Karuturi, S. K.; Su, L. T.; Tok, A. I. Y., TiO2 inverse-opal electrode fabricated by atomic layer deposition for dye-sensitized solar cell applications. Energy & Environmental Science 2011, 4 (1), 209-215. Figure 1 SEM images and optical transmission spectra for (a) TiO2 and (b) SnO2 inverse opals. In each case the wavelength position of the photonic stopband is red-shifted significantly when a solvent infiltrates the porous photonic crystal network. SEM images and optical transmission spectra for (c) artificial polystyrene opals coated with a gold film and (d) TiO2 inverse opals coated with a copper film. Metal film incorporation into the photonic crystal network acts to consistent blue-shift the observed photonic stopband. Figure 1

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call