Abstract

This work presents an in-depth investigation of the influence of the individual laser sintering parameters on density, mechanical, and dimensional properties of carbon fiber–reinforced PA12 parts manufactured by selective laser sintering (SLS) . A space-filling design of experiments method was used to plan the experiments and SLS trials were conducted to manufacture test samples that were characterized in terms of dimensional accuracy, density, and mechanical properties. Gaussian process–supervised learning was used to model the interaction between laser sintering parameters and quality properties. Stochastic optimization via evolutionary algorithm was employed to obtain trade-off solutions for several multi-objective optimization tasks. The Gaussian process presented excellent model quality for the majority of response variables evaluated. Laser sintering parameters had a significant influence on physical and mechanical properties, exhibiting complex and non-linear behavior. Multi-objective optimization showed a wide range of optimized laser sintering parameters available, depending on the trade-off objective desired.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.