Abstract

The selective isolation of acidic proteins using a thin layer of multiwalled carbon nanotubes (MWNTs) functionalized with polydiallyldimethylammonium chloride (PDDA) was demonstrated. A certain amount (20 ml) of a suspension of PDDA-functionalized MWNTs that had been well dispersed by sonication was filtered through an MF-Millipore membrane with a pore aperture of 1.2 microm, and a uniform layer of PDDA-MWNT composites with a thickness of ca. 5 microm formed on the membrane. A 4 x 1 cm piece of the obtained membrane was supported by a stainless steel wire mesh and was then sandwiched between two PTFE films with grooved flow-through channels to form an extraction module. This module with a flow inlet and outlet was incorporated into a sequential injection system for performing the on-line separation and preconcentration of acidic protein, i.e., bovine serum albumin (BSA), and the BSA retained on the layer was eluted with a citrate buffer used as stripping reagent. In addition to a significant reduction in flow resistance, a dynamic sorption capacity of 3.8 mg mg(-1) or 1.4 mg cm(-2) for BSA was achieved using the layer-based system--a 146-fold improvement over that obtained using a packed microcolumn mode. A sample volume of 2.0 ml yielded an enrichment factor of 17, a retention efficiency of 100% and a recovery of 95%, along with a sampling frequency of 20 h(-1) and a RSD value of 2.8% at 25 microg ml(-1) for BSA. The practical applicability of the system was demonstrated by isolating acidic proteins (especially human serum albumin) from whole blood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.