Abstract

The excellent combination of high strength, stiffness, low density and aspect ratio makes carbon nanotubes ideal reinforcement for nanocomposites. The load transfer between the outer and inner layers of multiwalled carbon nanotubes (MWCNT) is one of the important factor in the reinforcement of nanocomposites. In this work, the effect of variation in number of layers of multiwalled carbon nanotubes on effective tensile, compressive and transverse modulus of composite is evaluated. A 3-D finite element model based on representative volume element, consisting of multiwalled carbon nanotube made of shell elements surrounded by solid matrix material is built. With the increase in number of layers in multiwalled carbon nanotubes, the compressive modulus of composite increases, while the tensile modulus decreases. The transverse modulus of composite is found to increase, with the increase in number of layers in MWCNT. The finite element results for composite are compared with the rule of mixtures results using formulae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call